As mudanças na indústria marítima e o desenvolvimento tecnológico
Abstract
Keywords
Full Text:
PDF (Português (Brasil))References
Second IMO GHG study 2009. London: International Maritime Organization. 2009;
Smith TWP, Jalkanen JP, Anderson BA, Corbett JJ, Faber J, Hanayama S, et al. Third IMO Greenhouse Gas Study 2014. Int Marit Organ [Internet]. 2014;327. Available from:
http://www.imo.org/en/OurWork/Environment/PollutionPrevention/AirPollution/Documents/Third Greenhouse Gas Study/GHG3 Executive Summary and Report.pdf
Zhenju C. Reducing CO2 emissions from shipping. 2013.
Gilbert P. From reductionism to systems thinking: How the shipping sector can address sulphur regulation and tackle climate change. Mar Policy [Internet]. Elsevier; 2014;43:376–8. Available from: http://dx.doi.org/10.1016/j.marpol.2013.07.009
Crist P. GHG emissions reduction potential from international shipping. Rom J Fisc Policy.
;3(2):48–57.
Wang H, Lutsey N. Long-Term Potential to Reduce Emissions from International Shipping
by Adoption of Best Energy-Efficiency Practices. Transp Res Rec J Transp Res Board
[Internet]. 2014;2426:1–10. Available from: http://trrjournalonline.trb.org/doi/10.3141/2426-01
IMO - International Maritime Organization. MEPC.280(70) – Data da Implementação da
padronização do óleo combustível marítimo sobre a regra 14.1.3 do Anexo VI da MARPOL,
2016.
HOPKINS, Frances E.; TURNER, Suzanne M.; NIGHTINGALE, Philip D.; STEINKE,
Michael; BAKKER, Dorothee; LISS, Peter S.; BENDER ML. Ocean acidification and
marine trace gas emissions. Proc Natl Acad Sci U S A. 2010;107(2):760–5.
LISS, Peter S.; HATTON, Angela D.; MALIN, Gill; NIGHTINGALE, Philip D.; TURNER
SM. Marine Sulphur emissions [and discussion] Atmospheric chemistry of Sulphur in
relation to aerosols, clouds and climate. Philos Trans Biol Sci. 1997;352(1350):159–69.
Lloyd’s Register Group Limited, QinetiQ, University of Southampton. Global Marine
Technology Trends 2030 Global Marine Technology Trends 2030. 2015;96.
Kolwzan K, Narewski M. Alternative Fuels for Marine Applications. Latv J Chem. 2012;
(4):398–406.
Lindstad H, Eskeland GS, Psaraftis H, Sandaas I, Stromman AH. Maritime shipping and emissions: A three-layered, damage-based approach. Ocean Eng [Internet]. Elsevier;2015;110:94–101. Available from: http://dx.doi.org/10.1016/j.oceaneng.2015.09.029
Nikopoulou Z, Cullinane K, Jensen A. The role of a cap-and-trade market in reducing NO x
and SOx emissions: Prospects and benefits for ships within the Northern European ECA.Proc Inst Mech Eng Part M J Eng Marit Environ [Internet]. 2012;227(2):136–54. Available
from: https://journals.sagepub.com/doi/pdf/10.1177/1475090212459130
IMO - International Maritime Organization. ANEXO VI – Regras Para Prevenção da Poluição do Ar por Navios. In: MARPOL 73/78. 2005.
KEDZIERSKI A. Sulphur in marine fuels. 2012.
Ballini F, Bozzo R. Air pollution from ships in ports: The socio-economic benefit of coldironing technology. Res Transp Bus Manag [Internet]. Elsevier Ltd; 2015;17(2015):92–8.
Available from: http://dx.doi.org/10.1016/j.rtbm.2015.10.007
Winnes H, Styhre L, Fridell E. Reducing GHG emissions from ships in port areas. Res
Transp Bus Manag [Internet]. The Authors; 2015;17:73–82. Available from:
http://dx.doi.org/10.1016/j.rtbm.2015.10.008
Vierth I, Karlsson R, Mellin A. Effects of more stringent sulphur requirements for sea
transports. Transp Res Procedia [Internet]. Elsevier B.V.; 2015;8:125–35. Available from:
http://dx.doi.org/10.1016/j.trpro.2015.06.048
Lindstad H, Asbjornslett BE, Stromman AH. Reductions in greenhouse gas emissions and
cost by shipping at lower speeds. Energy Policy. Elsevier; 2011;39(6):3456–64.
Bouman EA, Lindstad E, Rialland AI, Stromman AH. State-of-the-art technologies,
measures, and potential for reducing GHG emissions from shipping ? A review. Transp Res
Part D Transp Environ. The Authors; 2017;52:408–21.
Lindstad H, Asbjornslett BE, Stromman AH. Reductions in greenhouse gas emissions and
cost by shipping at lower speeds. Energy Policy [Internet]. Elsevier; 2011;39(6):3456–64.
Available from: http://dx.doi.org/10.1016/j.enpol.2011.03.044
Cudina P. Analysis of the Energy Efficiency Design Index With a Proposal for Improvement.
;66(3).
Sharmina M, McGlade C, Gilbert P, Larkin A. Global energy scenarios and their
implications for future shipped trade. Mar Policy [Internet]. Elsevier Ltd; 2017;84(April):12–
Available from: http://dx.doi.org/10.1016/j.marpol.2017.06.025
Hobbs P V, Garrett TJ, Ferek RJ, Strader SR, Hegg DA, Frick GM, et al. Emissions from
Ships with respect to Their Effects on Clouds. J Atmos Sci [Internet]. 2000;57(16):2570–90.
Available from: http://journals.ametsoc.org/doi/abs/10.1175/1520-
(2000)057%3C2570:EFSWRT%3E2.0.CO;2
Lindstad H, Asbjornslett BE, Stromman AH. The importance of economies of scale for
reductions in greenhouse gas emissions from shipping. Energy Policy [Internet]. Elsevier;
;46:386–98. Available from: http://dx.doi.org/10.1016/j.enpol.2012.03.077
Eyring V, Köhler HW, Lauer A, Lemper B. Emissions from international shipping: 2. Impact
of future technologies on scenarios until 2050. J Geophys Res D Atmos. 2005;110(17):183–
Walsh C, Mander S, Larkin A. Charting a low carbon future for shipping: A UK perspective.
Mar Policy. 2017;82(April):32–40.
Lane M. Low sulphur marine fuel options : Technical , environmental & economic aspects
Maritime Stakeholder Event. 2011;(June).
Ushakov S, Valland H, Nielsen JB, Hennie E. Effects of high sulphur content in marine fuels
on particulate matter emission characteristics. J Mar Eng Technol. 2013;12:3(September).
Lazaridis M, Aleksandropoulou V, Hanssen J, Dye C, Eleftheriadis K, Katsivela E, et al. An
Assessment of Air Emissions from Liquefied Natural Gas Ships Using Different Power
Systems and Different Fuels. J Air Waste Manage Assoc [Internet]. 2008;58(3):404–11.
Available from: http://secure.awma.org/onlinelibrary/doihandler.aspx?doicode=10.3155-
-3289.58.3.404
Lamas MI, Rodroguez CG, Telmo J, Rodro??guez JD. Numerical Analysis of Emissions
from Marine Engines Using Alternative Fuels. Polish Marit Res. 2015;22(4):48–52.
Winnes H, Fridell E. Particle emissions from ships: dependence on fuel type. J Air Waste
Manag Assoc. 2009;59(12):1391–8.
Kasper a., Aufdenblatten S, Forss a., Mohr M, Burtscher H. Particulate Emissions from a Low-Speed Marine Diesel Engine. Aerosol Sci Technol. 2007;41(February 2015):24–32.
Eide MS, Longva T, Hoffmann P, Endresen O, Dalsoren SB. Future cost scenarios for
reduction of ship CO2 emissions. Marit Policy Manag [Internet]. 2011;38(1):11–37. Available from: http://www.tandfonline.com/doi/pdf/10.1080/03088839.2010.533711
Devanney J, Beach S. Eedi, a case study in indirect regulation of co2 pollution. Cent Tanksh
Excell line http// … [Internet]. 2010; Available from: http://www.c4tx.org/ctx/pub/eedi.pdf
Calleya J, Pawling R, Greig A. Ship impact model for technical assessment and selection of Carbon dioxide Reducing Technologies (CRTs). Ocean Eng [Internet]. Elsevier; 2015;97:82–9. Available from: http://dx.doi.org/10.1016/j.oceaneng.2014.12.014
Rehmatulla N, Calleya J, Smith T. The implementation of technical energy efficiency and CO2 emission reduction measures in shipping. Ocean Eng [Internet]. Elsevier Ltd;2017;139(May):184–97. Available from: http://dx.doi.org/10.1016/j.oceaneng.2017.04.029
Relativo ELA. Resolução mepc.203(62). 2012;203(62).
Devanney J. Efficient, Safe Reduction of CO2 Emissions from Shipping. Cent Tankersh Excell. 2011;
Bouman EA, Lindstad E, Rialland AI, Strømman AH. State-of-the-art technologies, measures, and potential for reducing GHG emissions from shipping – A review. Transp Res Part D Transp Environ [Internet]. The Authors; 2017;52:408–21. Available from: http://dx.doi.org/10.1016/j.trd.2017.03.022
Swedish Maritime Administration. Consequences of the IMO’s new marine fuel sulphur regulations. 2009;85.
Thanopoulou H, Strandenes SP. A theoretical framework for analysing long-term uncertainty in shipping. Case Stud Transp Policy [Internet]. World Conference on Transport Research
Society; 2017;5(2):325–31. Available from: http://dx.doi.org/10.1016/j.cstp.2017.03.008
Bentin M, Zastrau D, Schlaak M, Freye D, Elsner R, Kotzur S. A New Routing Optimization Tool-influence of Wind and Waves on Fuel Consumption of Ships with and without Wind
Assisted Ship Propulsion Systems. Transp Res Procedia [Internet]. Elsevier B.V.; 2016;14:153–62. Available from: http://dx.doi.org/10.1016/j.trpro.2016.05.051
Seddiek IS, Elgohary MM. Eco-friendly selection of ship emissions reduction strategies with emphasis on SOx and NOx emissions. Int J Nav Archit Ocean Eng [Internet]. Society of
Naval Architects of Korea. Production and hosting by ELSEVIER B.V.; 2014;6(3):737–48. Available from: http://dx.doi.org/10.2478/IJNAOE-2013-0209
Gilbert P, Wilson P, Walsh C, Hodgson P. The role of material efficiency to reduce CO2 emissions during ship manufacture: A life cycle approach. Mar Policy [Internet]. Elsevier;
;75:227–37. Available from: http://dx.doi.org/10.1016/j.marpol.2016.04.003
Ren J, Liang H. Measuring the sustainability of marine fuels: A fuzzy group multi-criteria
decision making approach. Transp Res Part D Transp Environ [Internet]. Elsevier Ltd; 2017;54:12–29. Available from: http://dx.doi.org/10.1016/j.trd.2017.05.004
Lai KH, Lun VYH, Wong CWY, Cheng TCE. Green shipping practices in the shipping industry: Conceptualization, adoption, and implications. Resour Conserv Recycl [Internet].
Elsevier B.V.; 2011;55(6):631–8. Available from:
http://dx.doi.org/10.1016/j.resconrec.2010.12.004
Armstrong VN, Banks C. Integrated approach to vessel energy efficiency. Ocean Eng. 2015;110:39– 48.
International Maritime Organization. Investigation of Appropriate Control Measures (Abatement Techonologies) to Reduce Black Carbon Emissions from International Shipping.
;
Ballou P, Ph D, Chen H, Ph D, Horner JD. Advanced Methods of Optimizing Ship Operations to Reduce Emissions Detrimental to Climate Change. 2008;
Hayman B, Dogliani M, Kvale I, Magerholm Fet A. Technologies for reduced environmental impact from ships - Ship building , maintenance and dismantling aspects. ENSUS 2000 Mar Sci Technol Environ Sustain Dep Mar Technol Sci Coast Manag. 2000;1:2–12.
Pospiech P. Improved propulsive efficiency by weaking the propeller hub vortex, [Internet]. 2015 [cited 2017 Apr 4]. Available from: http://articles.maritimepropulsion.com/?page=14
Marle G Van. Wind Technology could give shipping lines double digit fuel savingse [Internet]. 2015 [cited 2017 Apr 4]. Available from: https://theloadstar.co.uk/windtechnology-
could-give-shipping-lines-double-digit-fuel-savings/
Efficiency S, Forget K, Technical M, Centre S. The Fuel Purchaser ’ s Dream. :8–9.
Silveira DT, Córdova FP. A pesquisa científica. Métodos de pesquisa. 2009. 31-42 p.
Duarte EN, Ramalho FA, Autran MMM, Paiva EB, Araújo MBS. Estratégias metodológicas adotadas nas pesquisas de iniciação-científica premiadas na UFPB 10.5007/1518-2924.2009v14n27p170. Encontros Bibli Rev eletrônica Bibliotecon e ciência da informação. 2009;14(27):170–90.
Gil, A.C. Como elaborar projetos de pesquisa; editora Atlas, 4º edição, 2008.
Refbacks
- There are currently no refbacks.
Copyright (c) 2020 REVISTA DA ESCOLA DE GUERRA NAVAL

This work is licensed under a Creative Commons Attribution 4.0 International License.










REVISTA DA ESCOLA DE GUERRA NAVALJOURNAL OF THE NAVAL WAR COLLEGE

